

Wider Pedestrian Challenge 2018

VIPL Team

Institute of Computing Technology, Chinese Academy of Sciences

Hongkai Zhang

Bingpeng Ma

Hong Chang

Shiguang Shan

Xilin Chen

Institute of Computing Technology, Chinese Academy of Sciences

¥

- Data analysis
- Architecture
 - □ Base model
 - □ FPN with Cascade R-CNN
 - Useful modules
- Training
- Testing
- Results
- Conclusion

4

Data analysis

- Different brightness and scenes
- Various size of persons
- Occlusion
- Unlabelled person

斜院计算好

4

斜院计算所

Institute of Computing Technology, Chinese

Base model

Resnet-50[K. He, CVPR'16]

- □ A very powerful and popular base model
- Deformable convolution[J. Dai, ICCV'17]
 - Learning offsets to focus on the important positions for better feature extraction
 - Occlusion handling

6

FPN with Cascade R-CNN

- FPN[T. Lin, CVPR'17]
 - Form a feature pyramid to use different levels of features
 - Handling different scales of person
- Cascade R-CNN[Z. Cai, CVPR'18]
 - Add extra R-CNNs with different IOU threshold
 - More accurate localization performance

- Use bilinear interpolation instead of quantization when pooling features
- Better for feature extraction
- Re-weight Pool5/SE[S. Zhang, CVPR'18]
 - Add channel-wise attention after pooled feature
 - Occlusion handling

Context information

- Context is useful for classification
- Concatenate FCs
- Concatenate feature maps may lead to some misalignment problems

¥

Data Augmentation

Change gamma, saturation, gaussian blur/noise, etc.

- Random crop
 - Sparse and unlabelled pedestrians
 - Larger batch size can benefit BN[S. loffe, ICML'15] training

Multi-label

- Regarding pedestrian and cyclist as different labels when training
- Learning more discriminative features

Multi scale testing(4 scale + flip)

- Merge results from different scales, then do soft-nms[N. Bodla, CVPR'18]
- Box-voting: Averaging coordinates between result boxes and candidates

Ensemble

- Split the network into RPN-net and RCNN-net
- Select proposals from all RPN-net, put them into RCNNnet and get results
- Averaging score and coordinates

Conclusion

- According to the AP metric, Cascade RCNN is adopted for better localization performance
- Random cropping is not only a method for data augmentation but also handles sparse/unlabelled persons and brings gains because of larger batch size
- Testing tools are very powerful, but you have to be careful since the devil is in the detail

THANKS

斜院计算匠

Institute of Computing Technology, Chinese Academy of Sciences

References

- [K. He, CVPR'16] Kaiming He, et al. Deep Residual Learning for Image Recognition. CVPR16.
- [J. Dai, ICCV'17] Jifeng Dai, et, al. Deformable Convolutional Networks. ICCV17.
- [T. Lin, CVPR'17] Tsung-Yi Lin, et, al. Feature Pyramid Networks for Object Detection. CVPR17.
- [Z. Cai, CVPR'18] Zhaowei Cai, et, al. Cascade R-CNN: Delving into High Quality Object Detection. CVPR18.
- [K. He, ICCV'17] Kaiming He, et, al. Mask R-CNN. ICCV17.
- [S. Zhang, CVPR'18] Shanshan Zhang, et, al. Occluded Pedestrian Detection Through Guided Attention in CNNs. CVPR18.
- [S. loffe, ICML'15] Sergey loffe, et al. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. ICML15.
- [N. Bodla, CVPR'18] Navaneeth Bodla, et al. Soft-NMS -- Improving Object Detection With One Line of Code. CVPR18.