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Introduction

We proposes a robust detector especially for pedestrian detection. Considering the diversity of the dataset, we use a series of powerful methods to enhance the robustness ot
our model. Since there exists various sizes of persons in the images, we adopt FPN[1] to extract features from different levels. Due to the mAP evaluation metric, localization
performance is very important, so we perform cascaded detection like Cascade R-CNNJ|2]. For better feature extraction, we use some useful modules like Deformable Con-
volution[3], Re-weighting pooled features[4], ROI-Align[5], etc. Moreover, context information is encoded in the features for occlusion handling. For robustness, we use data
augmentations like changing gamma, changing saturation, gaussian blur and random cropping. Multi-scale testing and ensemble are used for better results.

IDETEWAGEIVAIE Architecture

Since data is extremely important to the network’s performance, we first did data | | Overall Architecture:
analysis. There are several cases which can be seen from Fig 1:

Different brightness and scenes
Various sizes of persons
Occlusion

Unlabelled persons
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Fig 2: Overall architecture.
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Basemodel:
e We use Resnet-50[6] since it’s a very powerful and popular basemodel

e Deformable Convolution[3] is used for better feature extraction, especially for
occlusion handling
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FPN with Cascade R-CNN:
e FPNJ1]is adopted to handle different scales of person

e Cascade R-CNNJ2] helps to achieve more accurate localization performance,
since localization is very important in the AP metric

Useful modules:

e ROI-align[5] uses bilinear interpolation instead of quantization when pooling
features, this get more precise features

e Re-weight Pool5[4] adds an channel-wise attention after pooled features to focus
on important channels. It is useful for occlusion handling

o Context information: We concatenate the FCs for better classification perfor-

Fig 1: Wider Pedestrian Data Analysis. mance as in Fig 3
In the image, green boxes represent ground-truth boxes, yellow boxes are ignored |
boxes. We are able to find that the woman in the lower right corner is not labelled, . '
and the two persons in the lower left corner have a big overlap. And it is obviously - o
that there are different scenes and various sizes of persons. These are the challenges _ Classification
of this dataset.

Training and Testing Fig 3: Context information.
Training:
e Data augmentation: change gamma, saturation, gaussian blur, random crop, etc. Results
e Multi label: regarding pedestrian and cyclist as different labels.
Testing: Method C'omments AP
e Multi scale testing(4 scales with flipped): we merge the results from different Cascade RCNN 3 stage [0.5, 0.6, 0.7] +3.8
scales, adopt soft-nms|7] and do box-voting. Deformable conv - +0.8
e Ensemble: we split the network into RPN-net and RCNN-net, select proposals Reweight Pool5 - +0.8
from the result of all RPN-nets, send them into RCNN-net to get the results form Multi label specify person and cyclist +0.4
different models, then normalize scores and coordinates. Augmentation color and random crop +3.5
Bn training - +1.3
" emble models I
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